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We present the scattering function for AB diblock copolymers, and their mixtures with homopolymers A 
and/or B, in the single-phase state. The calculation is a generalization of earlier random-phase 
approximation calculations to include differences in monomer volumes and statistical segment lengths, as 
well as homopolymer molecular-weight distributions and copolymer composition distributions. Their 
individual and combined effects on the scattering profiles l (q )  and on the Flory interaction parameter 
determined from l (q )  are discussed. Using poly (styrene-b-isoprene) as a specific example, we found that for 
pure block copolymer the asymmetry effects are negligible if the volume fraction of one of the blocks, )cA, 
is close to 0.5, but that they become significant as fA approaches zero or unity. For a blend, we found 
asymmetry effects over a wide range of system characteristics. 

(Keywords: block copolymer; blends; small-angle X-ray scattering; small-angle neutron scattering; Z parameter 
random-phase approximation) 

I N T R O D U C T I O N  

Investigation of the spectrum of thermally induced spatial 
composition fluctuations of AB block copolymers and 
their mixtures with corresponding homopolymers A 
and /or  B in a bulk, disordered, single phase is an area 
of active research in polymer physics. The spectrum can 
be studied experimentally by small-angle X-ray scattering 
(SAXS)~ and small-angle neutron scattering (SANS)Z. 
The scattering profile can depend on the constituent 
molecules' architectures, average degrees of polymeriza- 
tion as well as molecular-weight distributions, statistical 
segment lengths a~, monomer volumes v~ and Flory 
interaction parameter ~. 

A theoretical treatment of scattering from binary 
homopolymer blends was given by de Gennes 3 for the 
case of equal statistical segment lengths and monomer 
volumes. This case is what we refer to as 'symmetric' in 
this paper. It was generalized to asymmetric homopoly- 
mer blends (unequal monomer volumes) by Warner et 
al. 4 and Shibayama et al. ~. Scattering from mono- 
disperse, symmetric AB diblock copolymers has been 
treated by Leibler 6 and Fredrickson and Helfand 7. The 
Leibler theory was generalized to polydisperse symmetric 
copolymers by Leibler and Benoit a and Bates and 
Hartney 9, as well as by Mori et al. ~°, who also introduced 
a partial correction for asymmetry (discussed in the 
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fourth section). The Leibler theory was also generalized 
by Bates et al. 11 to monodisperse but asymmetric 
copolymers. Hong and Noolandi formally treated 
polydisperse, asymmetric copolymers 12, but concen- 
trated on the effects of polydispersity. Symmetric, 
copolymer/homopolymer blends have been treated by 
Leibler and Benoit s and Benoit et al. 13. 

In this paper we generalize the scattering equation, 
taking into account the combined effects of polydispersity 
and asymmetry for diblock copolymer/homopolymer 
blends. Using the Schultz-Zimm molecular-weight 
distributions, we demonstrate numerically their effects 
on the scattering profiles and on the estimated X 
parameter. 

SYSTEMS TREATED 

We consider a ternary mixture of AB diblock copolymer 
with A and B homopolymers in a bulk, disordered, single 
phase. To simplify the notation we denote homopolymers 
A and B as polymers D and E, respectively, as shown in 
Figure  1. The overall volume fractions of copolymer and 
homopolymers in the mixture are denoted by q~c, q~D and 
q~E, respectively, and the statistical segment length by aK 
for each component. We associate with each component a 
monomer volume vK by the relation v~ = 1/Po~, where 
Po~ is the density of pure component x, in monomers per 
unit volume. Each statistical segment length depends at 
least in part on, for example, chain stiffness, and so is 
independent of monomer volume (although of course to 
within a numerical factor v~-~ a3). The intrinsic 



Scattering from block copolymers in disordered state. H. Tanaka et al. 

¢c 
A B 

NA,aA,v A,r A NB,a B,v B,r B 

CD 

D 

ND,aD,vD,r D 

CE 

N E ,a E , v E • r E 

Figure I Block copolymer/homopolymer systems considered in this 
paper. They consist of AB diblock copolymers, together with D and 
E homopolymers which are chemically identical to the A-block and 
B-block chains, respectively. The volume fractions of the respective 
components are ~b c (copolymer), tkD and ~b E. N~, G, v~ and r~ (K = A, 
B, D or E) are, respectively, the degree of polymerization, 
statistical segment length, monomer molecular volume and effective 
degree of polymerization defined by equation (5) in the text 

asymmetry of the A and B chains exists in the fact that 
VA # VB and aA # aa. On the other hand, in assuming 
that the A and D blocks are chemically identical, we do 
assume that v A = VD and aA = aD, and likewise that 
V B = /) E and a B = a E. 

In addition to the asymmetry, each chain has a 
distribution of molecular weights which we model here 
using a Schultz-Zimm distribution, i.e. 

1 k,+X k~exp(_v,,N,, ) (1) ur'~ (N~) - v~ N~ 
r(k~ + 1) 

where 

o r  

k, k~ + 1 
v~ - - (2) 

N~,. N~,w 

N~,w/N~, . = (k~ + 1)/k~ - 2~ (3) 

N~,, and N~.w are the number-average and weight-average 
degrees of polymerization of the K chain, and 2~ is the 
heterogeneity index. The constants kK and v~ charac- 
terize the polydispersity in molecular weight for the x 
chain. We assume that the k~ and Vk for A, B, D and E 
are mutually independent, as in previous treat- 
mentsa-a o,12.~3. Note that the qJ~ (N~) given by equations 
(1) and (2) is the normalized weight-distribution 
function. 

GENERAL FORMALISM 

The scattering function can be calculated as a 
generalization of the result of Hong and Noolandi ~2. We 
need to calculate the free energy associated with small 

fluctuations in the concentration profiles for the system 
of polydisperse AB copolymers and D and E 
homopolymers. The basis of the calculation is the general 
expression for the free energy of polymer blends 14. In the 
present case we assume that the interaction energy 
depends only on the local volume fractions of A and B 
type monomers at each point, independent of whether 
the monomers belong to copolymer or homopolymer, 
which we denote ~b~(r) and ~bp(r). In the language of 
Hong and Noolandi, we need to introduce only two fields 
(G (r) and oa (r). The free energy density associated with 
small fluctuations in the concentration profiles, in units 
of kBT where k~ is the Boltzmann constant and T is the 
temperature, can be expressed to second order as 15: 

Af  A f2 

Po Po 

_ 1  C d3q (12 ~ Zij~li(q)~lJ(--q) 
V J (27z) 3 i.j=~ 

fl 
- ~ t~i(q)~i(-q) 

i=~t 

21 ~ io== ~ r~O~gu(q,~ -q)~o,(q)oj( - q )  (4) 

In this expression, P0 is the reference density, which is 
used for defining the Flory interaction parameters Zu, 
i,j = ~ or fl, which describe interactions between 
components i and j ;  Z=a describes interactions between 
A or D with B or E, and Z,~ = Zaa = 0. As well, ~i(q),  
i = c¢ or fl, is the Fourier transform of the fluctuation of 
the local volume fraction of constituent i from its overall 
value, ~bi(r ) = ~i(r) - Oi. The summation over x is over 
molecules, i.e. x = C, D and E, where C stands for an 
AB copolymer. Polydispersity is incorporated here in 
that molecules of differing molecular weight, even if 
otherwise identical, are treated as separate components 
x. For  each such component, the rK, sometimes referred 
to as the 'effective degree of polymerization', is: 

rK = (G/vo)N, (5) 

where Po = 1/Vo is the reference density used in defining 
the Flory interaction parameters. For block copolymers, 
r c = r A + r a. Similarly, each q~ in equation (4) is the 
volume fraction of the corresponding component with 
degree of polymerization N~. 

For homopolymers, x =  D or E, the g~(q , -q )  
vanishes unless i = j = ~c, in which case: 

g,~(q, _q)  = g(2)(q, _q)  (6) 

with 
2 

9~l(q, _ q )  = ~5 (e-X + x -  1) (7) 

2 2 which is the Debye function, in which x = N,,a,,q /6. 
For copolymers, x = C, there are three independent 
functions : 

~c2 n ( 2 ) / a ,  gCAA(q, - q )  = JABA ~[ - q )  
= (1) (1) f . ( q ,  - q )  aCA(q, - q )  = fAf~a~ (q)g. (--q) (8) 

f ~(q, --q) = f~g~(q, --q) 
with 

g(1)(q) = 1(1 _ e-X) (9) 
X 
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and 

f~ r~ N~v~ (10) 
rc NAVA + Nnvn 

These factors fA and fa are the volume fractions of 
components A and B within each copolymer. Note that 
the actual degrees of polymerization, N~, appear in the 
arguments of the Debye function, whereas the effective 
degrees of polymerization, r~, appear in the prefactors f~. 

Equation (4) can be rewritten as: 

A f2 - 1 f d3q 

po v 3( 5 

× Z,j~h~(q)~hj(-q)- ~ ~hi(q)~oi(-q) 
i,j=a i=~t 

1 ~ Sq(q)¢oi(q)e)j(_q) (11) 
2 i,j=a 

where the elements of the matrix S, which depend on 
only Iql, are given by: 

Saa(q) = CPC<rCgCAA(q, --q))v + ~bD<rDODD(q, --q))v 

E C Sap(q ) = S#~(q) -- q~c< egAB(q, - - q ) > v  (12)  

Sap(q) = rPc< rcOCaa(q, --q))v + (OE< rEgEEE(q, --q))~ 

where < >~ designates a volume average, and the line 
over a quantity, e.g. Sap(q), indicates that it contains 
volume-average quantities. For homopolymer, volume 
average is equivalent to weight average, and using a 
weight-distribution function such as equation (1) can be 
written (for homopolymer D) : 

F~ D ~ f  ( OgDo(q,--q))v dNDtPo(No)rDg~)o(q,--q) (13) 

with an equivalent expression for homopolymer E. For 
polydisperse, asymmetric copolymers, the volume and 
weight fractions are not equivalent, but in this paper we 
approximate the volume average by the weight average, 
and have for example: 

E C < CgAA(q, - - q ) > v  

(" 
JdNA dNB~tJA(NA)~tJa(NB r, ) CgAA(q, -q) (14) C 

The next step is eliminating the potentials ~ol, which 
is done by minimizing Afz with respect to each ¢0 i. This 
results in an expression for ~01, which is easily inverted 
to give (to leading order): 

# 
o~,(q) ~- - ~ [S(q)]ijl~j(--q) (15) 

j=a 

which can be substituted into equation (11 ) to give : 

Af2-po 2vl f ~ i , ~  

(16) 

Finally, we use the incompressibility condition to 
eliminate the ~p, arriving at: 

Afz 1 f d3q 
Po - 2V J ( 2 g )  a { -2Z  + [S(q)]L1 

- 2 [ S ( q ) ] ~  l+[S(q)]~ox}l~ha(q)l 2 (17) 

where we have denoted Xaa simply by X. From equation 
( 17 ) it follows that the scattering profile in the disordered 
phase, I(q), is given by: 

I(q) 
[ S ( q ) ] •  1 - 2[S(q ) ]~  1 + [S(q)]~-p 1 - 2• 

(18) 

where q is the magnitude of the scattering vector : 

q = (4g/2) sin(0/2) (19) 

and 2 is the wavelength of the radiation and 0 is the 
scattering angle. Expressing the elements of [S ] - a  in 
terms of the elements of S, equation ( 18 ) can be written : 

l(q) oc [S(q) /W(q)  - 2Z] -1 (20) 

with 

S(q) _ S,a(q ) + 2Sap(q) + Spa(q) (21) 

W(q) Saa(q)Spp(q ) -- Sap(q) 2 

Equations (5)-(10), (12)-(14), (20) and (21) 
constitute our general result for the scattering from the 
AB/A/B blend of polydisperse homopolymers and 
polydisperse, asymmetric diblock copolymers. The 
detailed evaluations of the weight-average functions, 
using the Schultz-Zimm distributions, are given in the 
Appendix. 

These results reduce to the cases referred to in the 
'Introduction' (except for the theory presented by 
Fredrickson and Helfand 7) by appropriate choices of 
volume fractions, statistical segment lengths, monomer 
volumes and distribution functions. In particular, the 
partial correction for asymmetry used in refs 1 and 10 is 
equivalent to using the equations for the symmetric case, 
but with the effective degree of polymerization used in 
both the prefactors f~ in equation (8) and the arguments 
of the correlation functions. In this paper we compare 
our calculated asymmetry corrections with those of that 
approach, which we hereafter refer to as the 'conventional' 
correction. 

NUMERICAL ANALYSIS OF ASYMMETRY 
EFFECTS AND DISCUSSION 

In this section we show and discuss results obtained using 
the scattering equations presented above and the 
Schultz-Zimm distributions. For these calculations, we 
have chosen the reference volume Vo = VX/~AVB. 

Pure copolymer 
Figures 2 and 3 show the results of numerical 

calculations for pure AB diblock copolymers, i.e. the case 
of q~c = 1 and 4~D = ~bE = 0 in equation (12). The profiles 
rcS(q)/W (q ) in Figure 2 and rcaW (q)/S(q) in Figure 
3 can be calculated for a given set of parameters (2, fA,,, 
mA..) as a function of qRg. Here 2 is the heterogeneity 
index for the A-block and B-block chains (equation (3)) 
which for these figures are assumed to be equal: 

2 ~ )~A = )'B (22) 

fA,. is the effective volume fraction of A-block chain in 
the copolymer as defined by equation (A.5), and rnA, n is 
defined by : 

2 2 mA, n --= Rg.A,n/Rg,n -- [1 + (aB/aA)2(NB,n/NA,n)]  - i  
(23) 
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Figure 2 Effect of asymmetry on r c S ( q ) / W ( q )  for monodisperse AB diblock copolymers, 2 -= Nw/N . = 1 ; (a) Nn/N A = 1 and (b) NB/N A = 5. 

The profiles r c S ( q ) / W  (q) correspond to various sets of the asymmetry parameters (VB/VA, aB/aA). The solid and broken curves are results of the 
ful l  and approximate treatments of the asymmetry effect, respectively (see text). Each set of profiles is vertically shifted to avoid overlap except for 
the lines labelled by n umber I ; the ( i + 1 ) th set of profiles is shifted by 50 units relative to the it h set ( i = 1 to 6 for part (a), i = 1 to 4 for part ( b ) ) 

and 

R2,n = 2 2 Rg,A,n + g g , a , .  (24) 

( I~2Aj  ~1/2 where Rg .... = ~g-~,,~,.1 , the number-average radius 
of gyration of the ~c-block chain, and Rg,, is that of the 
entire diblock chain. Alternatively, (2, va/v A, aB/aA) can 
be used as an equivalent set of parameters. It should be 
noted that the profile rc lW (q)/S (q) is proportional to 
the scattering intensity I(q) in the limit of Z = 0 (see 
equation (20)), i.e. the stable limit of the systems against 
the thermally induced spatial composition fluctuations, 
far away from the spinodal point. As the system 
approaches the spinodal point the asymmetry and 
polydispersity effects become increasingly important. 

Figure 2 shows the asymmetric effect on rcS (q)/W (q) 
for monodisperse AB block copolymers, i.e. 2 = 1. The 
profiles for equal block lengths, NB/NA = 1, and highly 
disparate block lengths, NB/N A = 5, are shown in panels 
(a) and (b) respectively, for various sets of the asymmetry 
parameters (VB/VA, aB/aA). In order to highlight the 
asymmetry effects, for each set of parameters two profiles 
are shown; the ones shown by the solid curves were 
calculated using the equations for the asymmetric 
copolymers, equations ( 12 ), (21 ) and (A.6)- (A. 19 ), and 
the profiles shown by the broken curves were calculated 
for symmetric copolymers with VA = VB = V0 and 
aA = aB = ao, but using the 'conventional' asymmetry 
correction discussed at the end of the previous section. 
For the sake of convenience we designate hereafter the 
analysis yielding the solid and broken profiles as full and 

approximate treatments, respectively. In Figure 2 each 
set of profiles is vertically shifted to avoid overlap (see 
figure caption ). 

As indicated in Figure 2a, the asymmetry effect is rather 
minor for the case of block copolymers with equal 
degrees of polymerization, except for the cases of the 
large asymmetry parameters such a s  (I)B/I)A, aB/aA)= 
(2.20, 1.3), (2.74, 1.4) and (3.38, 1.5). However, the 
effect is much enhanced for the case of highly disparate 
block degrees of polymerization, as shown in Figure 2b; 
the difference between the solid and broken profiles is 
much larger than for the case of NB/N A = 1. This is 
reasonable since the asymmetry in the statistical segment 
lengths tends to enhance the asymmetry in Rg,A,n and 
Rg,B,n in equation (23) in these cases (both aa > aA and 
Na > NA). For conventional block copolymers such as 
poly (styrene-b-isoprene) (PS-b-PI) and poly (styrene-b- 
butadiene) having VB/V k ~--0.77 and aB/a A "~ 0.86, the 
approximate treatment based upon the theory for the 
symmetric copolymer with effective fk  would suffice for 
the copolymers with nearly identical Na and N A. However 
as the difference between NB and N A becomes large, the 
accuracy of the approximate theory worsens, and the full 
theory should be used. 

Figure 3 shows comparisons of the scattering profiles 
rc lW (q)/S (q) obtained for the cases of:  no asymmetry 
and no polydispersity (curve 1), asymmetry but no 
polydispersity (curve 2), no asymmetry but polydis- 
persity (curve 3), and asymmetry and polydispersity 
(curve 4), for the cases of NB,n/NA, . = 1 in part (a) and 
Na,,/NA. . = 3 in part (b). All the profiles were calculated 
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Figure3 Comparison of the scattering profiles rclW(q)/S(q) 
(proportional to l(q) for the case Z = 0) for AB diblock copolymer 
obtained for the cases of no asymmetry and no polydispersity (curve 
1), asymmetry but no polydispersity (curve 2), no asymmetry but 
polydispersity (curve 3 ), and asymmetry and polydispersity (curve 4), 
for the cases (a) NB,n/NA,n = I and (b) Na,n/NA," = 3. All the profiles 
are calculated for the case ~ = 0 ,  VA=100cm3mol -% v~= 
77cm3mol  -~, a A = 7 A ,  a a = 6 A  and 2c=Nc.w/Nc,n = 1.1. These 
values correspond approximately to PS - b - PI copolymers 

for the case of Z = 0, VA = 100cm3mo1-1, vB = 
77 cm3 mo1-1, aA = 7A, aB = 6A and Nw/N ~ = 1.1 for 
the entire block chain. Note that aB/aA = 1 in equation 
(23) and VB/VA = 1 in equation (A.5) for the case of no 
asymmetry. This set of parameters approximately 
corresponds to that for PS-b-PI diblock copolymers 
where A and B correspond to PS and PI, respectively. 
The set of parameters in part (a) gives fA,n = 0.565 and 
mA,, = 0.576, while that in part (b) gives fA,n = 0.302 
and mA,, = 0.312. 

For PS-b-PI copolymers with NA = NB, the asymmetry 
effect is seen to be insignificant by comparing profiles 1 
with 2 and 3 with 4 in Figure 3a. The molecular-weight 
distributions of PS-block and PI-block chains affect the 
profiles much more than the asymmetry, as clearly 
observed by comparing profiles 1 with 3 and 2 with 4. 
The small suppression of the intensity due to the 
asymmetry can be traced to the slight increase in fA,, 
beyond 0.5 (see the changes in the profiles from curve 1 
to 2 or from curve 3 to 4). In this case, neglecting 
asymmetry leads to an underestimate of the value of Z 
determined by the best fit between experimental and 
theoretical SAXS and SANS profiles. On the other hand, 
neglecting polydispersity tends to overestimate Z. 

For PS-b-PI copolymers for which NA # NR, the effect 
of asymmetry is comparable with that of polydispersity, 
as shown in Figure 3b. Once again,the asymmetry effect 
is seen by comparing profile 1 with 2 or 3 with 4,while 
the polydispersity effect is seen by comparing profile 1 
with 3 or 2 with 4, In this case the asymmetry tends to 
enhance the scattered intensity, contrary to the case of 
Figure 3a. This is due to the fact that the asymmetry 
tends to suppress the asymmetry in the effective volume 
of the PS-block and PI-block chains in this case, causing 
fA,. to be closer to 0.5. In this case neglecting either the 
asymmetry or polydispersity tends to overestimate Z, and 
both significantly affect the scattering profiles and hence 
the fitted value of Z. 

Copolymer / homopolymer blends 

Figure 4 shows scattering profiles rc 1W (q)/S(q) for 
binary mixtures of AB diblock copolymer and D 
homopolymer plotted as a function of qRg,. where Rg,. 
is the number-average radius of gyration of the AB 
diblock copolymer. The four panels of the figure 
correspond to: (a) ND,./NA,. = 0,1 and ~b c = 0.8; (b) 
ND,./NA,. = 0.1 and q5 c = 0.2; (c) ND,./NA,. = 3 and 
4~c = 0.8; and (d) ND,./NA,. = 3 and ~bc = 0.2. In each 
panel, curves 1 to 4 have the same meanings as those in 
Figure 3. All panels are calculated using fA,. = 0.565, 
mA, . = 0.576, 2 c = 2D = 1.1, VB/V A = VB/VD = 0.77 and 
aB/aA = aB/aD = 0.86, values which correspond approxi- 
mately to binary mixtures of PS-b-PI with homopoly- 
styrene. (The copolymer characteristics are the same as 
in Figure 3a.) 

Effects of the copolymer volume fraction, q~c for a given 
ND,./NA,n on the scattering profiles are seen by 
comparing panels (a) with (b) and panels (c) with (d). 
The asymmetry effects are found to be greater for lower 
~bc than for higher 4~c, for this particular case where 
the diblock copolymer by itself exhibits little asymmetry 
effect. Effects of ND,./NA,. for a given thc on the scattering 
profiles are seen by comparing panels (a) with (c) and 
panels (b) with (d). The asymmetry effects are found to 
be greater for a greater ND,./NA,. than for a smaller 
ND,./NA,.. The asymmetry effect is very small in the case 
of part (a) so that the approximate treatment as discussed 
earlier would suffice. However, it becomes significant, to 
varying degrees, for the other cases. In general, the effect 
becomes increasingly important with increasing value of 
rDCkD/rcC~c for this particular diblock copolymer system 
having fA,. = 0.565. 

In conclusion, we have derived a set of scattering 
equations for copolymer/homopolymer blends which 
incorporate polydispersity and asymmetry, and have 
found that the effects of each can be comparable, and 
that both can be significant. These equations are no 
harder to use than previous scattering equations. 
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Figure 4 Comparison of the scattering profiles rc lW(q) /S(q)  (proportional to l(q) for the case g = 0) obtained for a binary mixture of AB 
diblock copolymer and D homopolymer plotted as a function of qRg,n where Rg.n is the number-average radius of gyration of the AB diblock 
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~b c = 0.2. In each panel, curves 1 to 4 have the same meanings as those in Figure 3. All these profiles were calculated for the following sets of 
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A P P E N D I X  

Detai led  scattering f o r m u l a e  

In  this a p p e n d i x  we ou t l ine  the  ca l cu l a t i on  of  the  
weigh t  ave rages  a p p e a r i n g  in e q u a t i o n  (12)  us ing the 
S c h u l t z - Z i m m  w e i g h t - d i s t r i b u t i o n  func t ion  o f  e q u a t i o n  
( l ), and  exhib i t  results .  T h r o u g h o u t ,  we a s s u m e  tha t  the  
reference v o l u m e  used in def in ing  the  F l o r y  i n t e r ac t i on  

p a r a m e t e r  is Vo = x/VAAVB. 

T h e  c o p o l y m e r  c o n t r i b u t i o n  to S = ( q )  c o n t a i n s  
r, c ( C g A A ( q , - - q ) ) v .  A p p r o x i m a t i n g  this by the  weigh t  

ave rage ,  and  us ing  the  S c h u l t z - Z i m m  d i s t r ibu t ion ,  it can  
be expressed  as :  

~ C  
( CgAA(q, - - q ) ) v  

l-'(k A + 1 ) F ( k  B + 1) dNA dNa  

x S k~ [ exp  ( - VAN A ) ] N k" [ exp ( -- VBN B ) ] 

/V \2  1 2 
x ~ ; ~ )  N 2  r c yANA-2 2 [yANA + e X p ( - y A N A )  - I]  
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F(kA + 1)F(kB + l)  
(H, + H 2 - Ha) (A.1) 

where 

//2 = dNA dNB 

H3 

x N~ * [exp ( - VANA)] N~ " [exp ( -- v~NB)] 

( 2 N A / ( y A r c )  ) 
× (>12 [2/(y~rc)]exp(--yANh) (A.2) 

\Vo/ \ 2/(y2rc) 

The integrand contains asymmetry parameters ex- 
plicitly through VA/Vo and implicitly through rc and y~. 
It is worth while to note that the calculations for the 
symmetric systems can be adapted to the asymmetric 
systems by the replacements: 

fU--+r A (1 - f )N  ~ r  a 
(A.3) 

Y~yA(Vo/VA) f--*fA 1/S-'* 1/r c 
The final result for H a , for example, is given by: 

H3 = v a 3 2F(ka + 1)F(ka + 1) v~ 
\Vo/ y2(kA + ka + 1)v k*+k"+l \VA/ 

x F ( 1 , k A +  l ,k  A +kB+2;VA--(VA/V0)2VB)vA / 

(A.4) 

for 

NA,nI)A kA 
fA,n NA,nVA + NB,.v B <~ k A q- k, (A.5) 

where F (a, fl, ?; z) is the Gauss hypergeometric function. 
The condition stated by equation (A.5) arises from the 
convergence condition of the Laplace transformation of 
the Whittaker function x°. The expression for //3 
corresponding to the condition fA,n > kA / ( kA  q- ka), as 
well as the other contributions to the scattering 
equations, can be obtained similarly. 

We summarize here the equations for the simplified 
case where the A-block and B-block chains have identical 
polydispersity parameters, k A = kr~ = k o r  /~A = / ' B  = /~, 

and for the case when equation (A.5) is satisfied. (This 
latter condition can always be satisfied by designating 
the block with volume fraction less than 1/2 as the A 
block.) Beginning with the copolymer contributions: 

< rcgCA (q, --q)>~ 

___ 2r ,° J x ,n F(1, 
x,~,. ' /.2fa,. \ 

+ 

f. \ 
k + 2,2k + 3;1 -~- ' '~1 

fB,J 

1 A,° 
/ 

- F t l , k  + 1,2k + 2"1, fB,dJJ (A.6) 

where 

z2 = [1 + XA..()~-- 1)] -1 (A.7) 

fn.. = 1 - fA,. (A.8) 

rc, n = ( V A / 1 ) o ) N A ,  n -~- ( V B / Y o ) N B ,  n ( A . 9 )  

which is the number average of the effective degree of 
polymerization, and 

for K = A or B. Next: 

<rcgCn(q, -q)>~ 

~2rc , - c2  r x , , .  ( 
- -  X ~ - -  j B , n l ~  F 1 

B,n L = J  B,n 

l 1 F/l,  k \ fa..  ;. + 1 

where 

G 1 - 

= y~N~,. (A.10) 

for 

and 

G 1 - 

k + l , 2 k + 3 ; 1 - f A * |  \ 
' f . , #  

+ 1 , 2 k + 2 ; 1 - f A ' " ) + G , ]  
f . . J  J 

(A.11) 

( f a , . ( 2 ~  1) F 1, k + l  A n  --1~ 
, , --  - . . . .  Z5 2 k + 2 " 1  fB,~ ) 

(A.12) 

xa.. <<. kfB,.(1/fA,. - 1//a,n) (A.13) 

z~/~x-1, F(I k+ 1 , 2 k + 2 ; 1 - - f R ' " z 5  ) 
fA..(2 + I) ' fA,. 

(A.14) 

otherwise. In these equations: 

z 5 = [1 + xB..(;~- 1)] -1 

Finally : 

(rcgCa(q, -q) )v  

(A.15) 

rc.n f A..f n..[ l 
xA.,x,., f,.,(;7 + 1 ) 

x F(1 k +  1 , 2 k + 2 ; 1  
' f . . . /  

fB,n(,~ q- 1 ) 

-- G1 + G21 (A.16) 

where 

G 2 - 

fo r  

and 

G 2 --- 

V 1 , k +  1 , 2 k + 2 ' l - - -  
f.. .(2 + l) 

fA,nZ2~ 

fm.zs/ 
(A.17) 

fA,.Z2/(fn,.Zs) ~ 1 (A.18) 

F 1 , k +  1 , 2 k + 2 " 1  
fA,.(2 + 1 ) ' fA..Zz/ 

(A.19) 
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It should be noted that equations (A.4) to (A.19) reduce 
to those given previously (equations (42) to (48) in ref. 
10) for the symmetric block copolymers with VA = VB = V0 
and a A = a B = a. 

The contribution from homopolymers D is given by: 

r~ o 2ro,n 
( DgDD(q, - -q)>v--  2 {XD,.-- 1 

XD,n 

+ [-I + ( }~D-  l )XD,n]  -I/(9"D-1)} 

(A.20) 

and from homopolymers E is obtained from equation 
(A.20) by replacing the subscript D with E. The r~,. is 
the number-average effective degree of polymerization 
for homopolymer x: 

r. , .  = ( v K / v o ) N ~ . .  (A.21) 

for ~ = D or E, with x.,. given by equation (A.10), and 
each 2. is the heterogeneity index for homopolymer ~, 
which may differ from that of the copolymer blocks 
(;~A = ;~B = ;~)' 
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